Asymptotic hyperfunctions, tempered hyperfunctions, and asymptotic expansions

نویسنده

  • Andreas U. Schmidt
چکیده

We introduce new subclasses of Fourier hyperfunctions of mixed type, satisfying polynomial growth conditions at infinity, and develop their sheaf and duality theory. We use Fourier transformation and duality to examine relations of these asymptotic and tempered hyperfunctions to known classes of test functions and distributions, especially the Gel’fand-Shilov spaces. Further it is shown that the asymptotic hyperfunctions, which decay faster than any negative power, are precisely the class that allows asymptotic expansions at infinity. These asymptotic expansions are carried over to the higher-dimensional case by applying the Radon transformation for hyperfunctions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lorentz-covariant ultradistributions, hyperfunctions, and analytic functionals

We generalize the theory of Lorentz-covariant distributions to broader classes of functionals including ultradistributions, hyperfunctions, and analytic functionals with a tempered growth. We prove that Lorentz-covariant functionals with essential singularities can be decomposed into polynomial covariants and establish the possibility of the invariant decomposition of their carrier cones. We de...

متن کامل

A Massera Type Theorem in Hyperfunctions in the Reflexive Locally Convex Valued Case

We continue our study on Massera type theorems in hyperfunctions from [11] and [12]. In the latter, we gave a result in hyperfunctions with values in a reflexive Banach space. In this article, we report its generalization to the case of hyperfunctions with values in a reflexive locally convex space. AMS Mathematics Subject Classification (2010): Primary 32A45; Secondary 32K13

متن کامل

Second Order Moment Asymptotic Expansions for a Randomly Stopped and Standardized Sum

This paper establishes the first four moment expansions to the order o(a^−1) of S_{t_{a}}^{prime }/sqrt{t_{a}}, where S_{n}^{prime }=sum_{i=1}^{n}Y_{i} is a simple random walk with E(Yi) = 0, and ta is a stopping time given by t_{a}=inf left{ ngeq 1:n+S_{n}+zeta _{n}>aright}‎ where S_{n}=sum_{i=1}^{n}X_{i} is another simple random walk with E(Xi) = 0, and {zeta _{n},ngeq 1} is a sequence of ran...

متن کامل

Coroutining Folds with Hyperfunctions

Fold functions are a general mechanism for computing over recursive data structures. First-order folds compute results bottom-up. With higher-order folds, computations that inherit attributes from above can also be expressed. In this paper, we explore folds over a form of recursive higher-order function, called hyperfunctions, and show that hyperfunctions allow fold computations to coroutine ac...

متن کامل

Stability of an additive functional equation in the spaces of generalized functions

as the equation for the spaces of generalized functions. Making use of the fundamental solution of the heat equation we solve the general solutions and the stability problems of this equation in the spaces of tempered distributions and Fourier hyperfunctions. Moreover, using the regularizing functions, we extend these results to the space of distributions. 2000 MSC: 39B82; 46F05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005